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Abstract. Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is
very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That
is why different indirect techniques are being used along with direct measurements. Here we address two
important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH)
methods. We discuss the application of the ANC technique for calculation of the astrophysical processes
in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct
capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state,
which plays the role of the subthreshold resonance. The ANC technique can also be used to determine
the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH
method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to
astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes
extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are
presented.

PACS. 26.20.+f Hydrostatic stellar nucleosynthesis – 21.10.Jx Spectroscopic factors and asymptotic nor-
malization coefficients – 25.55.Hp Transfer reactions – 27.20.+n 6 ≤ A ≤ 19

1 Introduction

For better understanding stellar evolution, cross sections
of astrophysically relevant nuclear reactions should be
known at the Gamow energy with an accuracy better than
10% [1]. The presence of the Coulomb barrier for collid-
ing charged nuclei makes nuclear reaction cross sections at
astrophysical energies so small that their direct measure-
ments in laboratories is very difficult, or even impossible.
That is why direct measurements are being done at higher
energies and then extrapolated down to the Gamow en-
ergy. Such an extrapolation procedure can cause an ad-
ditional uncertainty. Also for nuclear reactions studied in
laboratory, the electron clouds surrounding the interact-
ing nuclei lead to a screened cross section which is larger
than the “bare” nucleus one (see [2,3,4,5] and references
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therein). The enhancement factor is determined by the
electron screening potential which is a model dependent
quantity and its value in the laboratory is different from
the one present in the stellar environment. There are four
often used indirect techniques: the asymptotic normaliza-
tion coefficient (ANC) method [6], Coulomb breakup pro-
cesses [7,8], Trojan Horse (TH) [9,5] and the surrogate
reactions method (see [10] and references therein). In this
work we address only two indirect techniques, the ANC
and TH methods.

2 ANC method

The ANC method has been suggested in [11,12] and can
be used to determine the astrophysical factors for pe-
ripheral radiative capture processes. The method can be
applied for analysis of direct radiative capture processes
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leading to final loosely bound states. Due to small binding
energies and strong Coulomb barrier, the direct capture
reactions are peripheral. In previous papers [11,12,13] it
has been pointed out that the overall normalization of the
cross section for a direct radiative capture reaction at low
binding energy is entirely defined by the ANC of the fi-
nal bound state wave function into the two-body channel
corresponding to the colliding particles. The ANC tech-
nique turns out to be very productive for analysis of the
astrophysical processes in the presence of the subthresh-
old state [14]. Here we address some applications of the
ANC method in the presence of the subthreshold state.
We also demonstrate how ANC technique can be used
to determine the interference sign of the direct and reso-
nant amplitudes for some important astrophysical radia-
tive capture reactions.

2.1 Definition of the ANC

We present first some useful equations for the ANC. Let
us consider a virtual decay of nucleus c into two nuclei
a and b. First we introduce the overlap function I of the
bound state wave functions of particles c, a, and b [15]:

Icab(r) = 〈ϕa(ζa)ϕb(ζb)|ϕc(ζa, ζb; r)〉
=

∑

lcmlc jcmjc

ilc〈JaMajcmjc
|JcMc〉

× 〈JbMb lcmlc |jcmjc
〉Ylcmlc

(r̂) Icablcjc
(r). (1)

Here ϕi, ζi, Ji and Mi are the bound state wave func-
tion, a set of internal coordinates including spin-isospin
variables, spin and spin projection for nucleus i. Also r is
the relative coordinate of the centers of mass of nuclei a
and b, r̂ = r/r, jc, mjc

are the total angular momentum
of particle b and its projection in the nucleus c = (ab),
lc, mlc are the orbital angular momentum of the relative
motion of particles a and b in the bound state c = (ab)
and its projection, 〈j1m1j2m2|j3m3〉 is a Clebsch-Gordan
coefficient, Ylcmc

(r̂) is a spherical harmonic, and Icablcjc
(r)

is the radial overlap function which includes the antisym-
metrization factor due to identical nucleons. The summa-
tion over lc and jc is carried out over the values allowed by
angular momentum and parity conservation in the virtual
process c → a + b. The asymptotic normalization coeffi-
cient Cc

ablcjc
defining the amplitude of the tail of the radial

overlap function Icablcjc
(r) is given by [15]

Icablcjc
(r)

r>RN−→ Cc
ablcjc

W−ηc,lc+1/2(2κabr)

r
, (2)

where RN is the nuclear interaction radius between a and
b,W−ηc,lc+1/2(2κabr) is the Whittaker function describing
the asymptotic behavior of the bound state wave function
of two charged particles, κ =

√
2µab εc is the wave num-

ber of the bound state c = (ab), µab is the reduced mass
of particles a and b, εc is the binding energy of the bound
state (ab) and ηc = Za Zb e

2 µab/κ is the Coulomb param-
eter of the bound state (ab), Zi e is the charge of particle

i. We use the system of units such that h̄ = c = 1. There
is another definition of the ANC, the most model inde-
pendent one. The elastic a+ b scattering amplitude in the
channel (lc, jc) has a pole in the momentum plane [14]

Mlcjc
(k) =

Slcjc
− 1

2 i k

k→kp−→ 1

2 i kp

Wlcjc

k − kp
, (3)

corresponding to the bound state c = (ab) for kp = i κ and
to the resonance for kp = kR, where kR = k0 − i kI is the
resonance location in the momentum plane. Here, Slcjc

is
the elastic matrix element of the S-matrix. The residue in
the pole Wlcjc

is

Wlcjc
= −(−1)lc ieiπηc (Cc

ablcjc
)
2
, kp = i κ, (4)

Wlcjc
= −(−1)lc i (Cc

ablcjc(R))
2
, kp = kR. (5)

For narrow resonances, kI ¿ k0,

(Cc
ablcjc(R))

2
= (−1)lc µab

k1
eπ η0 e2i δlcjc (k0) Γlcjc

. (6)

Here η0 is the Coulomb parameter for the resonance at
momentum k0, δlcjc

(k0) is the potential (non-resonant)
scattering phase shift taken at the momentum k0. Thus
the residue in the bound state or resonance pole is ex-
pressed in terms of the ANC and for the resonance the
ANC can be expressed in terms of the partial resonance
width [14]. Note that eq. (3) holds only for k in the closest
vicinity of the pole. For elastic scattering at positive en-
ergies in the presence of the Coulomb barrier, the elastic
scattering amplitude with the bound state pole behaves
(in the R-matrix approach) as

Mlcjc
(k)

k→0−→= − 1

2 k
e−2i(φlc−σlc ) Γc

E + εc + i Γc/2
, (7)

where
Γc = 2Plc(E) γ2

c . (8)

Here Plc(E) is the penetrability through the Coulomb-
centrifugal barrier, φlc is the solid sphere scattering phase

shift in the partial wave lc and σlc =
lc
∑

n=1
tan−1(ηc

n ), r0 is

the channel radius, γ2
c is the effective (observable) reduced

width:

γ2
c =

1

2µab

W
−ηc,lc+1/2(2κr0)

r0
(Cc

ablcjc(r)
)
2
. (9)

Thus at positive energies, E → +0 due to the presence
of the Coulomb-centrifugal barrier the elastic scattering
amplitude behaves as the resonant scattering amplitude
with the resonance width expressed in terms of the ANC.
At positive energies the elastic scattering cross section in
the presence of the bound state and the barrier behaves
as the high-energy tail of the resonance located at energy
E = −εc. That what is called the “subthreshold” reso-
nance. However, it is not a resonance because the real res-
onance is located at complex energies on the second energy
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sheet, while the subthreshold resonance is just the bound
state located on the first energy sheet at negative energy,
corresponding to the bound state. At negative energies
(positive imaginary momenta) eq. (9) reduces to eq. (3).
Definitions of the ANC dictate the experimental methods
of its determination. The ANC can be determined from
peripheral transfer reactions which are dominated by the
tail of the overlap function. Equation (3) offers another
possibility to determine the ANC, namely, by extrapolat-
ing the elastic scattering amplitude (or equivalently the
phase shift) to the bound state pole [16].

2.2 ANC and astrophysical processes

i) For peripheral direct radiative capture reaction a+ b→
c + γ to the final state lcjc proceeding through the EL
transition, the cross section is

σ ∼ |〈Icablcjc
(r)|rL|ψkili(r)〉|2

≈ |Cc
ablcjc

|2|〈W−ηc,lc+1/2(2κabr)

r
|rL|ψkili(r)〉|2. (10)

Here L is the multipolarity of transition, ψki li(r) is the ini-
tial a+b scattering wave function with the relative momen-
tum ki in the partial wave li. Thus the ANC determines
the overall normalization of the direct radiative capture
cross sections.
ii) The elastic scattering amplitude (7) describes the
elastic scattering through the intermediate bound state
c = (ab). Assume that it is an excited state. Then, when
the excited bound state is formed it can decay into the
ground state by emitting a photon. In this case we have
the radiative capture process which is called the capture
to the ground state through the subthreshold resonance.
The amplitude of this process is given by

Mlcjc
(k)

k→0−→= − 1

2 k
e−2i(φlc−σlc ) Γ

1/2
c Γ

1/2
γ

E + εc + i Γc/2
. (11)

Here |Γ 1/2
γ |2 gives the radiative width for the transition

from the excited bound state→ ground state. Thus in the
presence of an excited bound state close to threshold, two
different radiative capture processes can occur: direct cap-
ture to this excited bound state or capture to the low-lying
bound states through this subthreshold bound state (cap-
ture through the subthreshold resonance). In what follows
we present some astrophysical reactions in the presence of
the subthreshold state.

2.3 ANC for 14N + p →
15O and the astrophysical

S-factor for 14N(p, γ)15O

The 14N+ p→ 15O+ γ reaction is a notorious example of
an important astrophysical reaction where the subthresh-
old state plays a dominant role. This reaction is one of
the most important processes in the CNO cycle. As the
slowest reaction in the cycle, it defines the rate of en-
ergy production [1] and, hence, the lifetime of stars that

Fig. 1. The 14N(3He, d)15O differential cross sections. The
squares are data points and the solid lines are the DWBA cal-
culations normalized to the experimental measurements in the
main peaks; (a) our data, (b) our fit of the angular distribution
measured in ref. [17].

are governed by hydrogen burning via CNO processing.
The 14N(p, γ)15O reaction proceeds through direct cap-
ture to the subthreshold state 3/2+, 6.79MeV (binding
energy 504 keV) and, possibly, via direct capture to the
ground state and resonant capture through the first res-
onance and subthreshold resonance at Es = −504 keV.
The overall normalization of the direct capture is defined
by the corresponding ANC. The ANC for the subthreshold
state Es = −504 keV also determines the partial proton
width of the subthreshold resonance. In order to determine
the ANCs for 14N + p → 15O, the 14N(3He, d)15O proton
transfer reaction has been measured at an incident energy
of 26.3MeV. Angular distributions for proton transfer to
the ground and five excited states were obtained. Angu-
lar distributions of deuterons from the 14N(3He, d)15O re-
action leading to the most important transition to the
fourth excited state 3/2+, 6.79MeV in 15O measured by
us at an incident energy of 26.3MeV and in [17] mea-
sured at an incident energy of 20MeV, together with
our DWBA fits are shown in fig. 1. The proton ANC
that we obtain for the 14N + p → 15O(3/2+, 6.79MeV)
is C2 = 27.1 ± 6.8 fm−1. Using our ANCs, we calcu-
lated the astrophysical factor and reaction rates for the
14N(p, γ)15O process. The capture to the 3/2+, 6.79MeV
state dominates all others and the calculated astrophysi-
cal factor is S(0) = 1.40± 0.20 keV b. The calculated and
experimental S(E)-factors for the transition to this sub-
threshold state are presented in fig. 2. The uncertainty in
S(0) is entirely determined by the ANC of this state and
the 13% systematic uncertainty in the experimental S(E)-
factor [18]. We find that the astrophysical factor for the
capture to the ground state is S(0) = 0.15 ± 0.07 keV b.
The total calculated astrophysical factor at zero energy
is S(0) = 1.70 ± 0.22 keV b, which is in excellent agree-
ment with the S-factor S(0) = 1.70± 0.22 keV b obtained
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Fig. 2. The 14N(p, γ)15O astrophysical S-factor for capture to
the fourth excited state ((c): 3/2+, 6.79MeV), which includes
the incoherent sum of the resonant and nonresonant terms.
The squares are data points [18]; the solid lines represent the
calculated S-factor using our measured ANC.

from recent direct measurements performed at LUNA [19].
The lower astrophysical factor of the 14N(p, γ)15O reac-
tion leads to an increase in the age of the main-sequence
turnoff in globular clusters [20].

2.4 ANC and interference of direct and resonant
amplitudes

To demonstrate how the information about the ANC can
be used to determine the interference sign of the resonant
and direct amplitudes of the radiative capture process we
use the R-matrix approach. Let us consider the radiative
capture reaction a+ b→ c+ γ.

The R-matrix radiative capture amplitude to a state
of nucleus c with a given spin Jf and relative orbital an-
gular momentum of the bound state lf is given by the
sum of resonant and nonresonant (direct capture) ampli-
tudes [21]:

UIlfJfJi
= UR

IlfJfJi
+ UNR

IlfJfJi
. (12)

Interference effects only occur in eq. (12) if the resonant
and nonresonant amplitudes have the same channel spin
I and orbital angular momentum li. In the one-level, one-
channel approximation, the resonant amplitude for the
capture into the resonance with energy Ern and spin Ji,
and subsequent decay into the bound state with the spin
Jf , is given by

UR
IliJfJi

= −i ei(φli
−σli

)
[Γ Ji

Ili
(E)]1/2 [Γ Ji

γJf
(E)]1/2

E − Ern + i
ΓJi

2

. (13)

Here Ji is the total angular momentum of the colliding
nuclei a and b in the initial state, Ja and Jb are the spins

of nuclei a and b, and I, k, and li are their channel spin,
relative momentum and orbital angular momentum in the
initial state. UIliJfJi

is the transition amplitude from the
initial continuum state (Ji, I, li) to the final bound state

(Jf , I). Also [Γ Ji

Ili
(E)]1/2 is real and its square, Γ Ji

Ili
(E),

is the observable partial width of the resonance in the
channel a + b with the given set of quantum numbers,
[Γ Ji

γJf
(E)]1/2 is complex and its modulus square is the ob-

servable radiative width:

Γ Ji

γ Jf
(E) =

∣

∣[Γ Ji

γ Jf
(E)]1/2

∣

∣

2
. (14)

The energy dependence of the partial and radiative widths
is given by

Γ Ji

Ili
(E) =

Pli(E)

Pli(ERn)
Γ Ji

Ili
(ERn), (15)

and

Γ Ji

γ Jf
(E) =

(

E + εf
ERn + εf

)2L+1

Γ Ji

γ Jf
(ERn), (16)

respectively. Here, Γ Ji

Ili
(ERn) and Γ Ji

γ Jf
(ERn) are the ex-

perimental partial and radiative resonance widths, εf is
the proton binding energy of the bound state in nucleus
A, L is the multipolarity of the gamma quanta emitted
during the transition, and ΓJi

≈
∑

I Γ
Ji

Ili
. In a strict R-

matrix approach

[Γ Ji

γ Jf
(E)]1/2 = 2 [Pli(E)]1/2 γJi

γJf
. (17)

Here the radiative reduced-width amplitude γJi

γJf
is given

by the sum of the internal and external (or channel)
reduced-width amplitudes:

γJi

γJf
= γJi

γJf
(int) + γJi

γJf
(ch). (18)

Hence the total radiative width is

∣

∣[Γ Ji

γ Jf
(E)]

∣

∣ =
∣

∣[Γ Ji

γ Jf
(E)]

1/2
int + [Γ Ji

γ Jf
(E)]

1/2
ch

∣

∣

2
, (19)

[Γ Ji

γ Jf
(E)]

1/2
int,ch = 2 [Pli(E)]1/2 γJi

γJf
(int, ch). (20)

While the internal reduced-width amplitude is real, the
channel reduced-width amplitude is complex [21] and is
defined as

γJi

γJf
(ch) = ili+L−lf+1 ei(ωli

−φli
) 1

k
µab

L+1/2

×
(

Za e

mL
a

+ (−1)L Zb e
mL
b

)

×
√

(L+ 1)(2L+ 1)

L

× 1

(2L+ 1)!!
(kγ a)

L+1/2 CJf Ilf

√

Γ Ji

bIli
(ER)

×([Fli(k, a)]2 + [Gli(k, a)]
2) ×Wlf (2κ a) (li0L0|lf0)

×U(L lf Ji I; li Jf ) JL(li lf ). (21)
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The nonresonant capture amplitude is given by

UNR
IliJfJi

= −(2)3/2 ili+L−lf+1 ei(ωli
−φli

) 1

k
µab

L+1/2

×
(

Za e

mL
a

+ (−1)L Zb e
mL
b

)

√

(L+ 1)(2L+ 1)

L

× 1

(2L+ 1)!!
(kγ a)

L+1/2 CJf Ilf Fli(k, r0)

×Gli(k, r0)W−ηf ,lf+1/2(2κ r0)

×
√

Pli(li0L0|lf0)U(L lf Ji I; li Jf )

×J ′

L(li lf ), (22)

Pli(E) =
k r0

F 2
li
(k, r0) +G2

li
(k, r0)

, (23)

where Fli and Gli are the regular and singular (at the
origin) solutions of the radial Schrödinger equation, κ =
√

2µab εf is the wave number, and kγ = E + εf is the
momentum of the emitted photon. Integrals JL(li lf ) and

J
′

L(li lf ) are expressed in terms of Fli , Gli and Whittaker
function W−ηf ,lf+1/2 and are given in [21,22]. Both the
channel radiative width and nonresonant amplitude are
normalized in terms of the ANC, CJf Ilf , which defines
the amplitude of the tail of the bound state wave function
of nucleus c projected onto the two-body channel a+b with
the quantum numbers Jf , I, lf . Such a normalization is
physically transparent: both quantities describe periph-
eral processes and, hence, contain the tail of the overlap
function of the bound wave functions of c, a and b, whose
normalization is given by the corresponding ANC. Note
that in the R-matrix method the internal nonresonant
amplitude is included into the resonance term. Also, in
the conventional R-matrix approach the channel radiative
width and nonresonant amplitude are normalized in terms
of the reduced width amplitude, which is not directly ob-
servable and depends on the channel radius. However, it
is more convenient to express the normalization of the
nonresonant amplitude in terms of the ANC that can be
measured independently [14]. Then only the radial ma-
trix element depends on the channel radius. As we can see
from eqs. (21) and (22) the relative phase of the channel
radiative width and the nonresonant amplitude is fixed
because only the ANC has unknown phase factor. Thus
by measuring the ANC for the bound state we are able
to fix the absolute normalization of the channel radiative
width and nonresonant amplitude simultaneously.

2.5 Interference of the resonant and nonresonant
amplitudes for the 11C(p, γ)12N astrophysical radiative
capture reaction

The evolution of very low-metallicity, massive stars de-
pends critically on the amount of CNO nuclei that they
produce. Alternative paths from the slow 3α process to
produce CNO seed nuclei could change their fate. The
11C(p, γ)12N reaction is an important branch point in one
such alternative path. At energies appropriate to stellar

evolution of very low-metallicity, massive stars, nonres-
onant capture to the ground state and interference of
the second resonance and the nonresonant terms deter-
mine the reaction rate. The ANC for 12N → 11C + p
has been determined from peripheral transfer reaction
14N(11C, 12N)13C at 10MeV/nucleon [22]. The contribu-
tions from the second resonance and interference effects
were estimated using the R-matrix approach with the
measured asymptotic normalization coefficient and the
latest value for the radiative width of the second reso-
nance [23]. The ANC gives useful information not only
about the overall normalization of the direct capture am-
plitude, but also about the radiative width of the reso-
nances. According to eqs. (20), the channel part of the ra-
diative width may be determined from the ANC. Since the

channel part is complex, [ΓγJf Ji
(E)]

1/2
ch = λ+iτ , while the

internal part of the radiative width amplitude is real, i.e.

[ΓγJf Ji
(E)]

1/2
int = ν, the total radiative width is given by

ΓγJf Ji
(E) = (λ+ ν)2 + τ2. (24)

The relative phase of λ and ν is, a priori, unknown, so
these real parts may interfere either constructively or
destructively. Hence, τ 2 always provides a lower limit for
the radiative width and additional stronger limits may be
obtained if assumptions are made about the interference
between the two real contributions. For constructive
interference of the real parts, the channel contribution
gives a stronger lower limit. In the case of destructive
interference, if |λ| > |ν|, the channel contribution gives an
upper limit for the radiative width. These limits depend
on only one model parameter, the channel radius.

Recently, a measurement at RIKEN [23] found the
gamma width to be 13.0 ± 0.5meV. Using the measured
ANC we find that for a channel radius of r0 = 5.0 fm,
ΓγJf Ji

(ER)ch = 54meV. Taking into account the experi-
mental value of the total radiative width, one can find the
internal contribution from

ΓγJf Ji
(ER) =

∣

∣ΓγJf Ji
(ER)

1/2
ch + ΓγJf Ji

(ER)
1/2
int

∣

∣

2
. (25)

There are two solutions, 15 and 112meV. Assuming that
the second value is too high [24], we conclude that the
internal part of the radiative width is 15meV, and de-
structive interference between the real parts of the channel
and internal contributions gives the experimental value,
13meV. In this case, the channel contribution alone rep-
resents an upper limit for the radiative width, while the
square of the imaginary part of the channel contribution,
1.8meV, gives a lower limit. The relative phase between
the direct capture amplitude and the channel contribution
to the radiative width of the second resonance is fixed
in the R-matrix approach. Therefore, when the channel
contribution to the radiative width dominates, the sign of
the interference effects may be determined unambiguously.
For 11C(p, γ)12N, we find that the nonresonant and res-
onant capture amplitudes interfere constructively below
the resonance and destructively above it. It has important
consequences on the reaction rates for 12N production.
In particular, the reaction sequence 7Be(α, γ)11C(p, γ)12N
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will provide a means to produce CNO nuclei, while bypass-
ing the 3 α reaction, in lower-density environments than
previously anticipated [25].

2.6 Interference of the resonant and nonresonant
amplitudes for the 13N(p, γ)14O astrophysical radiative
capture

13N(p, γ)14O is one of the key reactions which trigger the
onset of the hot CNO cycle. This transition occurs when
the proton capture rate on 13N is faster, due to increas-
ing stellar temperature (≥ 108 K), than the 13N β-decay
rate. The rate of this reaction is dominated by the reso-
nant capture to the ground state of 14O through the first
excited state of (ER = 0.528MeV). However, through con-
structive interference, direct capture below the resonance
makes a non-negligible contribution to the reaction rate.
We have determined this direct contribution by measur-
ing the asymptotic normalization coefficient for 13N+p→
14O (0.0MeV). This ANC has been determined from the
peripheral reaction 14N(13N, 14O)13C [26]. The radiative
capture cross section was estimated using an R-matrix
approach with the measured asymptotic normalization co-
efficient and the latest resonance parameters. What is not
known is the sign of the interference term between the res-
onant and nonresonant components of the radiative cap-
ture amplitudes. As we have mentioned it is possible to
sometimes infer the sign of the interference to be used in
R-matrix calculations of the radiative capture cross sec-
tion if the ANC is known even in the absence of direct
experimental data. Such is the case for the reaction be-
ing considered here. At energies below the resonance, the
channel part, which depends on the ANC, has the same
sign as the nonresonant amplitude leading to the con-
structive interference of these two terms. From eqs. (21)

and (20) we find [Γ Ji

γ Jf
(ER)]

1/2

ch
= 0.90 + i 0.02 eV1/2 and

the channel radiative width |[Γ Ji

γ Jf
(ER)]

ch
| = 0.81 eV at

the resonance energy and the channel radius r0 = 5 fm.
The total resonance radiative width is |[Γ Ji

γ Jf
(E)]|| =

|[Γ Ji

γ Jf
(E)]

1/2
int + [Γ Ji

γ Jf
(E)]

1/2

ch
|
2

. Thus there are two pos-

sible solutions for the internal part, a large negative value

[Γ Ji

γ Jf
(E)]

1/2

int(1)
= −2.73 eV1/2 and a small positive value

[Γ Ji

γ Jf
(E)]

1/2

int(2)
= 0.93 eV1/2. The first solution leads to

the destructive interference with the non-resonant compo-
nent at energies below the resonance, but it yields a high
internal radiative width, |Γ Ji

γ Jf
(E)]

int
| = 7.48 eV. The sec-

ond solution leads to the constructive interference with the
non-resonant component at energies below the resonance
peak. We select this second solution because it is corrob-
orated by the microscopic calculations [27], where it has
been shown that the internal and external parts of the E1
matrix elements have the same sign and very close magni-
tudes. Our choice is also supported by the single-particle
calculations [28,26]. Due to this constructive interference
we find the S-factor for 13N(p, γ)14O to be larger than
previous estimates. Consequently, the transition from the

cold to hot CNO cycle for novae would be controlled by
the slowest proton capture reaction 14N(p, γ)15O.

3 Trojan Horse

The Trojan Horse method (THM) is a powerful indirect
method which selects the quasi-free (QF) contribution of
an appropriate three-body reaction performed at energies
well above the Coulomb barrier to extract a charged par-
ticle two-body cross section at astrophysical energies free
of Coulomb suppression. The THM has been suggested
by Baur [9] and has been advanced and practically ap-
plied by a group from the Universitá di Catania work-
ing at the INFN-Laboratori Nazionali del Sud in Catania
in collaboration with other institutions (see [5] and refer-
ences therein). The THM has already been applied many
times to reactions connected with fundamental astrophys-
ical problems [29,30] such as 7Li(p, α)4He, 6Li(d, α)4He,
6Li(p, α)3He, and many others, see [5] and references
therein.

Let us consider the TH reaction

a+A→ y + b+B, (26)

where a = (xy). The subreaction of interest is

x+A→ b+B. (27)

In the TH method the incident particle a is accelerated
to energies above the Coulomb barrier. After penetration
through the barrier the projectile breaks into x+y leaving
the fragment x to interact with target A, while the second
fragment-spectator y leaves carrying away the excess en-
ergy. By a proper choice of the final particle kinematics,
the THM allows one to extract the cross section of the
sub-process (27). However, the extracted amplitude of the
reaction (27) in the THM is half-off-energy shell because
the initial particle x in the sub-process (27) is off-the-
energy shell. It has been suggested in the original paper [9]
that the virtuality of particle x is compensated for by the
higher momentum components in the Fermi motion of the
fragments x and y inside the projectile a. However, high
momentum components means that the distance between
the fragments is so small that the interaction between the
fragments is not negligible and the mechanism of the re-
action is more complicated than the QF one. Instead, the
virtuality of particle x in the extracted cross section is sig-
nificantly compensated if we take into account the binding
energy of the fragments x and y in the projectile a [31].

The THM allows one to determine both direct and res-
onant reactions (27). As an example of the result achieved
using the THM, we present in fig. 3 the astrophysical
factor for the 3He(d, p)4He process determined from the
3He(6Li, α p)4He TH reaction [32]. The TH resonant cross
section (full dots) is normalized to the direct experimental
data (open circles and open triangles) at energies near the
resonance peak. The black on-line solid line is the result
of a fit of the TH data (see ref. [32] for details), showing
the trend of the bare nucleus S(E)-factor, while the blue
on-line solid line is obtained by interpolating the screened
direct data.
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Fig. 3. (Colour on-line) The 3He(d, p)4He astrophysical S-
factor determined from the TH reaction. The open circles and
open triangles are direct experimental data; the full dots are
the TH data. The black solid line represents the behavior of the
bare nucleus S(E)-factor, resulting from a fit on the TH data,
while the solid blue line is interpolation of the direct data.

Fig. 4. Pole diagram describing the quasi-free mechanism.

3.1 TH reaction amplitude

A simple mechanism describing the TH process is the so-
called QF process shown in fig. 4. In the quasi-free process
it is assumed that the incident particle (assume incident
particle is A) interacts with one of the fragments of a =
(xy), say with x which is considered to be “quasifree”,
while the second fragment is considered to be a “passive”
spectator which is not involved in the process. Thus the
interaction of the spectator y with x and A in the knockout
process is neglected. The fact that the fragment x is not
free is taken into account by folding the quasi-free reaction
amplitude with the Fourier component of the (xy) bound-
state wave function which takes into account the Fermi
motion of x in the bound state a = (xy).

In this section we present a derivation of the TH reac-
tion amplitude from the general 2→ 3 reaction amplitude
for the TH process (26). A general expression for the am-

plitude of the reaction is given by

M =
〈

χ
(−)
bB χ

(−)
yF ϕyϕbϕB

∣

∣∆Vf (1 +G+∆Vi)
∣

∣ϕAϕaχ
(+)
i

〉

(28)

=
〈

χ
(−)
bB χ

(−)
yF ϕyϕbϕB

∣

∣(∆Vf G
+ + 1)∆Vi

∣

∣ϕAϕaχ
(+)
i

〉

.

(29)

The amplitudes (28) and (29) are the post and prior forms
of the exact amplitude. Let us consider the post form.
Here, G+ is the total Green function of the system a+A,

χ
(+)
i is the distorted wave describing the scattering wave

function of a+A in the initial state of the reaction, χ
(−)
bB

is the distorted wave describing the scattering of particles
b+B in the final state: the distorted wave χ−yF describes
the distorted wave of the spectator y and the center of
mass of the system F = b+B in the final state. For the mo-
ment we assume that Coulomb interactions are screened.
Eventually we can take the limit of the screening radius
to infinity. Also ϕi is the bound state wave function of
nucleus i,

∆Vi = VaA − UaA, (30)

∆Vf = VbB − UbB + VyF − UyF , (31)

Vij and Uij are the interaction potential and optical po-
tential between particles i and j. For example, VaA =
VxA + VyA. To extract the amplitude of the subprocess
x+A→ b+B, which is the final goal of the TH method,
we note that the Hamiltonian of the system a+A is

H = HaA+Ha+HA = HxA+HyF+Hx+HA+Hy, (32)

where Hi is the internal Hamiltonian of nucleus i and
Hij = Tij + Vij is the Hamiltonian of the relative mo-
tion of nuclei i and j, Tij is their relative kinetic energy
operator and Vij is their interaction potential. The total
Green’s function operator can be written as

G+ =
1

E −HaA −Ha −HA + i0
(33)

=
1

E −HxA −HyF −H0
xyA + i0

(34)

=
1

E −HxA − TyF − UyF −∆VyF −H0
xyA + i0

(35)

= G̃+ +G+∆VyF G̃
+, (36)

Here ∆Vf = VyF − UyF , VyF = Vyx + VyA,
H0
xyA = Hx +Hy +HA and

G̃+ =
1

E −HxA − TyF − UyF −H0
xyA + i0

(37)

We substitute eq. (37) into (28) and drop the term

∆Vf G
+∆VyF G̃

+∆Vi as the higher order term in the per-
turbation expansion over ∆V . Then we get from eq. (28)

M =
〈

χ
(−)
bB χ

(−)
yF ϕyϕbϕB

∣

∣∆Vf (1 + G̃+∆Vi)
∣

∣ϕAϕaχ
(+)
i

〉

.

(38)
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To single out the TH subprocess amplitude we replace
∆Vi = VxA + VyA −UaA by VxA and ∆Vf = VyF −UyF +
VbB−UbB by ∆VbB = VbB−UbB . Then the amplitude (28)
becomes

M =
〈

χ
(−)
bB χ

(−)
yF ϕyϕbϕB

∣

∣∆VbB (1 + G̃+ VxA)
∣

∣ϕAϕaχ
(+)
i

〉

=
〈

χ
(−)
bB χ

(−)
yF ϕyϕbϕB

∣

∣∆VbB (1 +G+
xA VxA)

∣

∣ϕAϕaχ
(+)
i

〉

.

(39)

Here

G+
xA =

1

ExA −HxA + i0
(40)

and ExA is the relative kinetic energy of particles x and
A. The appearance of G+

xA in eq. (40) is due to

〈

χ
(−)
yF ϕyϕbϕB

∣

∣G̃+ =
〈

χ
(−)
yF ϕyϕbϕB

∣

∣G+
xA. (41)

Equation (39) reveals a very important result. It contains
a factor 1+G+

xA VxA. For the on-shell case, the relative mo-
mentum of particles x and A pxA = kxA, where kxA is the
x − A on-shell relative momentum related with their rel-
ative kinetic energy as ExA = p2

xA/(2µxA). Correspond-
ingly,

(1 +G+VxA)|eikxA·rxA〉 = χ+
kxA

(rxA) (42)

is the scattering wave function of particles x and A in-
teracting via the optical potential VxA. We assume at the
moment that all the Coulomb interactions are screened.
However, in the TH method the entry particle x is not free
because it is in the bound state a = (xy), i.e. the momen-
tum of x is not fixed. In other words, x is off-the-energy
shell because ExA 6= p2

xA/(2µxA). For the off-shell case

(1 +G+VxA)|eipxA·rxA〉 = χ+
(os)kxA,pxA

(rxA) (43)

is the so-called off-shell scattering function.

3.2 TH method for direct reactions

We first consider the direct subreaction (27). We assume
that this reaction proceeds through the transfer of parti-
cle c from A to x (it can be also considered as a particle
transfer from x to A), i.e. A = (Bc) and b = (xc). The
“pole” diagram corresponding to the on-shell reaction de-
scribing the particle c transfer mechanism with the x−A
rescattering in the initial and b − B rescattering in the
final state is shown in fig. 5. This diagram describes the
DWBA amplitude. To simplify eq. (39) in the case of the
direct transfer subprocess, we insert the projection opera-
tors

∑ |ϕx〉〈ϕx|,
∑ |ϕB〉〈ϕB | and

∑ |ϕc〉〈ϕc| into the bra
and ket states. The sum is taken over discrete states and
an integral is used for the continuum states of the cor-
responding nucleus. We leave in the projection operator
only the ground state projections |ϕx〉〈ϕx|, |ϕB〉〈ϕB | and
|ϕc〉〈ϕc| assuming that only the ground states of x, B and
c contribute to the reaction. If necessary the excited states

Fig. 5. Pole diagram describing the direct reaction x + A →
b+ B mechanism. Bubbles show the initial and final state in-
teractions.

can also be taken into account. Then we get

〈ϕyϕbϕB |∆VbB (1 +G+
xA VxA)|ϕAϕa〉

≈ 〈ϕb|ϕcϕx〉〈ϕB |∆VbB |ϕB〉
×(1 + 〈ϕx|G+

xA|ϕx〉〈ϕx|VxA|ϕx〉)
× 〈ϕcϕB |ϕA〉〈ϕxϕy|ϕa〉 (44)

We introduce the overlap functions Iαβγ = 〈ϕβ ϕγ |ϕα〉 and
use the approximation 〈ϕx|VxA|ϕx〉 ≈ UxA; also we use
the approximation

〈ϕx|G+
xA|ϕx〉 ≈ G

(U)+
xA = (ExA − TxA − UxA + i0)

−1
.
(45)

Note that 〈ϕB |∆VbB |ϕB〉 ≈ VxB + VcB − UbB , where VjB
is the interaction potential between the point like nuclei
j = x, c and B. All the neglected terms are higher order in
the perturbation theory over ∆V . Then we get in lowest
order for the TH amplitude with the subprocess described
by the direct transfer reaction (27):

M = 〈χ(−)
yF [χ

(−)
bB Ibxc|∆VbB | IAcB (1 +G+

xA VxA)] I
a
xyχ

(+)
i 〉.

(46)

The expression in the brackets is the amplitude of subre-
action (27) which is the final goal of the TH. To see it we
just rewrite (46) in momentum space:

M =

∫

dpyF
(2π)3

dpxA
(2π)3

χ
∗(−)
yF (pyF )M

sub(kbB ,pxA)I
a
xy(pxy)

×χ(+)
i (pxA), (47)

where

pxy =
mypx −mxpy
mx +my

=
my

mx
pa − py. (48)

Also note that in the center of mass of TH reaction
a + A → y + b + B the relative momentum is given by
paA = pa and pyF = py. We denote by pi (ki) the mo-
mentum of the virtual (real) particle i and by pij (kij) the
relative momentum of virtual (real) particles i and j. Also

χ
(+)
i (pxA) ≡ χ

(+)
kaA

(pxA), i.e. it is the Fourier component
of the a−A scattering wave function with the incident mo-
mentum kaA which in the center of mass of the TH reac-

tion is just ka. Correspondingly χ
(−)
yF (pyF ) ≡ χ(−)

kyF
(pyF ).
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The half-off-the-energy shell amplitude of the subpro-
cess (27) is given by

Msub(kbB ,pxA) = 〈χ(−)
bB Ibxc|∆VbB | IAcB χ+

(os)kxA,pxA
〉.
(49)

The virtuality of the entry particle x of this amplitude
results in the fact that the relative momentum of parti-
cles x and A in the initial state of reaction (27) pxA 6=√
2µxAExA. Due to the off-shell entry particles ampli-

tude (49) does not have the Gamow penetration factor.
We would like to underscore that from ExA+Q = EbB for
positive Q > 0 for reaction (27) at ExA → 0, EbB ≈ const.
Hence the off-shell scattering function χ+

(os)kxA,pxA
is the

only ExA dependent factor in M sub at ExA → 0. The off-
shell scattering function is a universal factor which does
not depend on the specifics of the direct reaction. Rewrit-
ing the matrix element in eq. (49) in the momentum rep-
resentation gives

Msub(kbB ,pxA) =

∫

dpbB
(2π)3

dp′

xA

(2π)3
χ
∗(−)
kbB

(pbB)

×I∗bxt
(

p′

x −
mx

mb
pb

)

∆VbB I
A
cB

(

pB −
mB

mA
p′

A

)

× χ+
(os)kxA,pxA

(p′

xA). (50)

Approximation ∆VbB ≈ VcB , which works for mx >
mc, is enough for us to investigate the dependence of
Msub(kbB ,pxA) on ExA for arbitrary masses of x and c.
Using this approximation we get from eq. (50)

Msub(kbB ,pxA) =

∫

dpbB
(2π)3

dp′

xA

(2π)3
χ
∗(−)
kbB

(pbB)

×I∗bxc
(

p′

x −
mx

mb
pb

)

WA
cB

(

pB −
mB

mA
p′

A

)

× χ+
(os)kxA,pxA

(p′

xA). (51)

Here WA
cB(pcB) is the form factor determined by

WA
cB(pcB) =

∫

drcBe
−ipcB ·rcB VcB(rcB) I

A
cB(rcB). (52)

The Fourier component of the off-shell scattering function
χ+

(os)kxA,pxA
(rxA) is given by

χ+
(os)kxA,pxA

(p′

xA) = δ(p′

xA − pxA) +G+
0 (p

′

xA;ExA)

×T (p′

xA,pxA;ExA), (53)

G+
0 (p

′

xA;ExA) =
1

ExA − p′2xA/2µxA + i0
, (54)

T (p′

xA,pxA;ExA) is the off-shell x − A scattering am-
plitude. Amplitude M sub(kbB ,pxA) extracted from the
THM should be compared with the corresponding on-shell
reaction amplitude

Monsh(kbB ,kxA) =

∫

dpbB
(2π)3

dpxA
(2π)3

χ
∗(−)
kbB

(pbB)

×I∗bxt
(

px −
mx

mb
pb

)

∆VbB I
A
cB

(

pB −
mB

mA
pA

)

× χkxA
(pxA). (55)

Fig. 6. Diagram describing the TH reaction a+A→y + b+B
proceeding through the direct subprocess x+A→ b+B mech-
anism. Bubbles show initial and final state interactions and the
off-shell scattering function

Equations (47) and (49) is our final result. The diagram
corresponding to this amplitude (47) is shown in fig. 6.
Equation (47) is a general expression for the TH reaction
amplitude which contains the half-off-shell direct subpro-
cess amplitude and the initial and final state rescatterings.
As we can see the subprocess amplitude is not factorized,
but instead is folded with the initial and final state dis-
torted waves and the overlap function for a → y + x.
Note that if the initial and distorted waves in the mo-
mentum space are replaced by delta-functions, eq. (47)
just becomes a trivial plane wave impulse approximation
described by the diagram of fig. 3.

3.3 TH for resonant reactions

In sect. 3.1 we derived a general expression, eq. (39), for
the amplitude of the TH reaction (26) which is valid for
both direct and resonant subprocesses (27). Here we con-
sider the resonant TH reactions, i.e. we assume that the
subprocess (27) proceeds through the intermediate reso-
nance F ∗. Our goal is to relate the half-off-shell and on-
shell resonant amplitudes. Note that it is easier to relate
the off-shell and on-shell resonant reactions than the di-
rect ones. The resonant TH amplitude can be extracted
from eq. (39) in a straightforward manner because it con-
tains the Green’s operator G+

xA. Below we demonstrate
how to do it. For simplicity here we neglect the initial and
final state interactions.

The TH amplitude of the reaction (26), which proceeds
through the resonance state F ∗ in the intermediate system
x+A, is given by

M =Msub(R)(kbB ,pxA) I
a
xy(pxy). (56)

Here Msub(R) is the amplitude of the resonant subpro-
cess (27). Usually in practical calculations the overlap
function Iaxy is expressed in terms of the corresponding
single-particle bound state wave function ϕxy:

Iaxy = S1/2
xy ϕxy. (57)

Here, Sxy is the spectroscopic factor of the bound state
(xy) in a with given quantum numbers. For simplicity we
do not write down symbols corresponding to the quantum
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Fig. 7. Diagram describing the resonant reaction a + A →

y + b+B.

numbers and assume that Sxy = 1. In the momentum
space the bound state wave function is given by

ϕxy(pxy) = −2µxy
W (pxy)

p2
xy + κ2

xy

, (58)

W (pxy) =

∫

dr e−ipxy·r Vxy(r)ϕxy(r) (59)

=

(

− εa −
p2
xy

2µxy

)

ϕxy(pxy). (60)

Now we can find the virtuality factor

σx = Ex −
p2
x

2mx
(61)

of the virtual particle x using the energy and momentum
conservation laws in both vertices a→ x+y and x+A→
F ∗. After simple algebraic transformations we get

σx = ExA −
p2
xA

2µxA
= − 1

2µxy

[

p2
xy + (κaxy)

2
]

< 0. (62)

Thus we derived a very important result for the rela-
tive kinetic energy of particles x and A ExA in the TH
method: ExA < p2

xA/2µxA, i.e. always kxA < pxA, where
kxA =

√
2µxAExA is the x − A relative on-shell momen-

tum. The half-off-shell resonant reaction amplitude in the
TH method is described by the diagram shown in fig. 7
and is given by

Msub(R)(kbB , pxA;E) = −1

2
(4π)2

√

1

µbBkbB

×
l0
∑

m0=−l0

Yl0m0
(k̂bB)Y

∗

l0m0
(p̂xA) e

iδfl0
(kbB)

×
√

ΓbB(EbB , r0)wl0(pxA, kxA(R))

ExA − E(R)
xA

.

(63)

Here kxA(R) =

√

2µxAE
(R)
xA , kbB is the on-shell relative

momentum of particles b and B in the final state, l0(m0) is

the resonance orbital angular momentum (its projection),
Yl0m0

is the corresponding spherical harmonics, r̂ = r/r,
δfl0 is the nonresonant (potential) scattering phase shift
of particles b and B in the final state. The off-shell form
factor

wl0(pxA, kxA(R)) =

∞
∫

0

dr r2ψ
(R)
nl0

(r)V (r)jl0(pxA r)

=
(

E
(R)
xA − EpxA

)

∞
∫

0

dr r2ψ
(R)
nl0

(r) jl0(pxA r)

=
(

E
(R)
xA − EpxA

)

ψ
(R)
nl0

(pxA).

(64)

Here ψ
(R)
nl0

(r) is the resonant Gamow radial wave function,

ψ
(R)
nl0

(pxA) is its Fourier component, jl0(pxA r) is the spher-

ical Bessel function, EpxA
= p2

xA/2µxA, n is the principal
quantum number.

Let us write down the well known expression for the
on-shell Breit-Wigner resonance amplitude for the reso-
nant process x+A→ b+B

M (R)(kbB , kxA;E) = −1

4
(4π)2

√

1

µbBkbB

√

1

µxAkxA

×
l0
∑

m0=l0

Yl0m0
(k̂bB)Y

∗

l0m0
(k̂xA) e

iδfl0
(kbB)eiδfl0

(kxA)

×
√

ΓbB(EbB , r0)
√

ΓbB(ExA, r0)

ExA − E(R)
xA

,

(65)

where kxA is the on-shell relative momentum of the initial
particles x and A and kbB is the on-shell relative momen-
tum of the final particles b and B. In the R-matrix method
the resonance width contains the Coulomb-centrifugal
barrier penetrability factor which exponentially decreases
with energy. Hence for ExA → 0 the resonant amplitude
MR ∼

√

Pl0(kxA) M̃
R. Just this factor makes it diffi-

cult or impossible to measure resonant reactions at astro-
physically relevant energies. Now we compare the half-off-
shell resonant amplitude, eq. (63), and the on-shell ampli-
tude, eq. (65). The half-off-shell amplitude contains the
form factor wl0(pxA, k(xA)R). The barrier factor should
come from the integral representation in eq. (64), namely
from jl0(pxAr). However, jl0(pxAr) does not contain the
Coulomb penetration factor and does not depend on the
on-shell momentum kxA. Hence in limit kxA → 0 the
off-shell form factor does not go to zero. We underscore
that it is very important that always in the TH reaction
pxA > kxA. Comparing eqs. (63) and (65), we get

M (R)(kbB , kxA;ExA) = −
1

2
eiδ(xA)l0

(kxA)

√

1

µxAkxA

×
√

ΓxA(ExA, r0)

wl0(pxA, kxA(R))
Msub(R)(kbB , pxA;ExA). (66)
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Note the only difference between the half-off-shell and the
on-shell resonant amplitudes is the appearance of the form
factor wl0(pxA, kxA(R)). Now we give the expression for the
on-shell resonant cross section which can be derived from
the TH half-off-shell resonant cross section

σ(ExA) =
µxAkxA µbBkbB

(2π)2
1

k2
xA

1

4π

∫

dΩkbB

×
∫

dΩkxA

∣

∣M (R)(kbB , kxA;ExA)
∣

∣

2
(67)

=
1

4

µbBkbB
(2π)2

1

k2
xA

1

4π

ΓxA(ExA, r0)

|wl0(pxA, kxA(R))|2

×
∫

dΩkbB

∫

dΩpxA

∣

∣Msub(R)(kbB , pxA;ExA)
∣

∣

2
. (68)

4 Summary

In this work we have addressed two important indi-
rect techniques in nuclear astrophysics use, asymptotic
normalization coefficient (ANC) and Trojan Horse (TH)
methods. Both techniques allow one to determine the as-
trophysical factors at Gamow peak or even at zero energy
avoiding the extrapolation procedure. The ANC method
determines the overall normalization of the peripheral ra-
diative capture processes. The ANC technique becomes
especially powerful for astrophysical processes proceeding
through a subthreshold state —a loosely bound state. In
this case the ANC determines both the overall normal-
ization of the direct radiative capture to the subthreshold
state and the resonance partial width for captures through
the subthreshold resonance. We demonstrated the applica-
tion of the ANC technique for the key CNO cycle reaction
14N(p, γ)15O. The ANC method turns out to be useful
also for determination of the sign of the interference term
of the resonant and nonresonant radiative capture ampli-
tudes. We demonstrated it for two important CNO cycle
reactions: 11C(p, γ)12N and 13N(p, γ)14O.

The TH method allows one to determine the as-
trophysical factors for astrophysical reactions, both
direct and resonant. In practical applications the as-
trophysical factor extracted from the TH reaction is
available in a wide energy range from astrophysical
energies to higher energies. Its absolute normalization
is determined by normalization of the TH astrophysical
factor to the one obtained from direct measurements
at higher energies. Assuming that the energy depen-
dence of the TH astrophysical factor is correct, one
can determine the absolute astrophysical factor at
astrophysical energies. In this work we have derived a
general expression for the TH reaction amplitude which
takes into account the off-shell effects and initial and
final state interactions. The direct and resonant TH
reactions are considered separately. We derived the TH
amplitude for direct subreactions in terms of the off-shell
scattering wave function. The energy dependence of this

wave function determines the energy dependence of the
TH astrophysical factor for an arbitrary direct reaction
mechanism. We connect the TH resonant cross section
with the on-shell resonant cross section. We intend to use
the derived equations to calculate the absolute astrophys-
ical factors.
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